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Within the tetrad formalism we introduce quantized space-time in the curvilinear 
case by using general coordinate transformations with noncommuting terms. 
Fermion and boson fields are studied and the affine connection is also defined 
in this space. It is shown that space-time torsion and magnetic monopoles appear 
as consequences of the theory with quantized space-time at small distances. This 
method may open a new way of understanding topological structure of space- 
time. 

1. INTRODUCTION 

Concept of space-time and its properties with respect to matter structure 
plays an important role in developing the physical science. Space-time may 
be understood as an a priori base or theater in which physical phenomena 
take place and its interrelations with the material world are those of dialec- 
tical unity. 

In classical works due to Newton, Einstein, and their followers the 
concept of space-time, and the interrelation between its structure and 
properties of  matter, has received great understanding and further develop- 
ments. Recently, this problem is very up-to-date and has received much 
attention with the successes of high-energy physics experiments which allow 
one to probe distances down to 10-16-10 -17 cm. In this connection, different 
possible structures of space-time at small distances are discussed intensively, 
which may become the natural arena of future physical theory. An introduc- 
tion and general situation of  this problem together with the related literature 
have been presented by Prugove~ki (1984), Namsrai (1985a, 1985b), and 
therefore, we do not discuss it here again. We only notice that among the 
different proposed structure of space-time at small distances, quantized 
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space-time structure or quantum geometry has become the focus of wide 
interest at present, owing to its role in two programs of  representing gauge 
theories by random surfaces and strings (Polyakov, 1981; Gomez, 1982) 
and of the construction of the unified theory of elementary particle interac- 
tions including gravitation, based on the theory of strings and superstrings 
(Scherk and Schwarz, 1974; Schwarz, 1982; Green and Schwarz, 1984; 
Fradkin and Tseytlin, 1985). Here we will generalize results obtained in a 
previous paper (Namsrai, 1985b) in which we have discussed some 
possibilities of introducing quantized space-time at small distances and 
presented a concrete form its realization. In our scheme, it is proposed that 
there is no exact conceptual meaning of definite space-time points, i.e., the 
components of coordinates become operator valued and are not commu- 
tative: 

[~ ' ,  ~ ]  r 0 for/z  r l, 

where points 2~ ~" of quantized space-time consist of two parts: 

x " ~  ~ = x ~ + 13̀  ~" (1) 

Here x ~ are usual c-number coordinates of nonquantized space-time, para- 
meter l means a value of the fundamental length, and 3`" are Dirac 3' 
matrices. Within this simple realization of quantized space-time we have 
constructed quantum field theory free from ultraviolet divergences and have 
considered its consequences. 

In the language of coordinate transformations formula (1) may be 
regarded as a global coordinate transformation, i.e., the parameter 3'" does 
not depend on space-time points x ~. The aim of this work is to generalize 
quantized flat space-time with coordinates (1) to curvilinear ones and to 
study geometrical aspect of this generic scheme. In this case instead of the 
global coordinate transformation (1) we shall consider the following general 
coordinate transformations: 

x ~ ) ~  ~ = x ~ + /F~(x)  (2) 

where P ' ( x )  are arbitrary noncommutative functions of the points x ~. 
It turns out that reparameterizations of space-time by means of formula 

(2) lead to quantized space-time and give unexpected interesting results for 
physical applications. In particular, from the given model, it follows immedi- 
ately that quantized space-time with the components (2) gives rise to the 
appearance of the space-time torsion and to existence of magnetic 
monopoles. Moreover, it opens a way to the extensions of general relativity 
formalism with the fundamental length. 

In Section 2 we introduce quantized space-time with coordinates (2) 
and give the transition method to large-scale space-time for different physical 
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fields. Sections 3 and 4 are devoted to the representation of the affine 
connection and torsion tensor for the quantized space-time, respectively. 
An interesting possibility of the existence of the magnetic monopole as a 
direct consequence of the quantized space-time is considered in Section 5. 

2. SPACE-TIME WITH QUANTIZED COORDINATES 

Recently, the theoretical and experimental successes of high-energy 
physics dictate a deeper level of understanding of the structure of space-time 
and its properties at small distances. However, our usual concepts of 
space-time are confirmed experimentally to be valid to distances of the 
order 10-15-10 -~6 cm (see Namsrai, 1985b). This tells us that if different 
possible structure (discrete, stochastic, quantized, etc.) of  space-time may 
exist at small distances, its appearance may be taken into account as a small 
background over the entire continuous space-time, or in other words, 
observable effects and contributions to them due to these expected structures 
to any physical processes, indeed, are very small. Thus, we assume that 
space-time with quantized coordinates is slightly different from classical 
continuous space-time, i.e., its coordinates may be formed by means of 
formula (2), where F ~ are arbitrary matrices with zero trace and, in general, 
depending on classical coordinates x". From (2) it follows immediately that 
the commutator of quantized coordinates acquires the form 

[~-, ~]  = i G  ~ 

where 

G ~ = x~F ~ _x~F ~ + l(F'~F ~ - F ~ F  ~) 

It is easily seen that G ~p is antisymmetric over indices ~, v and may be 
regarded as an operator in space-time with coordinates ~'~. In this sense, 
geometry of this space is similar to the geometry of Snyder (1947). 

An important problem of the construction of the theory is how to pass 
from quantized space-time in the microworld to nonquantized one on a 
large scale. This procedure requires some mathematical method depending 
on the concrete realization of the introduction of quantized space-time into 
physics. We can distinguish two mathematical procedures: 

(i) Limiting transition of the parameter of the theory, which character- 
izes discrete or quantized space-time. In our case, this parameter is the 
value of the fundamental length 1 and the passage to the large scale means 
that I-~ 0. 

(ii) The second way of  introducing the method of quantized space-time 
may be regarded as a transformation of one coordinate system to another 
[like (2)] and that all observable physical processes may be understood as 
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averaged values over the background of quantized space-time. In a given 
case, the averaging procedure is reduced to take trace of F" matrices, for 
example, 

1 
x ~ = (;0) = -~ Sp( ;  ") (3) 

where d means the dimension of space-time, in particular, for Minkowski 
space d -- 4. 

Now we study fermion and boson fields in the flat quantized space-time 
(2). For simplicity, we assume F" = iy'y 5. For the fermion field we have 

~b(;)= f d4p e-'P;'u(p)= f d4p e-'VXv(p) 

where 

v(p)=e~'5~Zu(p)=[cosh 1(-p2)1/24 Ys/3 sinh l(-p2)X/2]u(p) (_p2)1/2 

Here u(p) is the usual Dirac spinor, obeying the standard Dirac equation 

(~-m)u(p) =0 

In our case, the Green's function of the fermion field satisfies the following 
equation: 

Iff()~') GRI(X ' -  X)I~(~)~) : ~(4)()~,  3~) 

or in the momentum space it takes the form 

~(p)(m -~)v(p) = ~(p)G~l(~)u(p) 
where 

~(p)=ff(p)[cosh l(-p2)'/24 TS~sinh l(-p') 1/2] (_p2)1/2 

In accordance with the averaging procedure discussed above (see, also 
Namsrai, 1985b) we have 

G(/~) = (GR (/~)) = [rn(p 2) -/~ - ie] --1 (4) 

where m(p 2) = rn cosh(21(-p2)a/2). 
Let us consider the vector boson field in the quantized space-time and 

its structure having the form 

f d4p e-ip?. I driP -,px A~(~)= ~ e•(p)= ~ e  e.(p) 
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here 

e, ( p ) :  e ~ '  e , (p )= [cosh l(-p2)1/2 ff y 5 ~  sinh l(-p2)' /2Je,  (p) (_p2) 1/2 

and e~, (p) is the usual polarization vector of the boson field, for which the 
following relation holds: 

p~.e~.(p)=O 

For the generalized polarization vector e~. (p) obtained in accordance with 
the quantized property of space-time we have also 

p.et.(p) =0 

Therefore, spin structure of the vector boson particle is determined by the 
standard procedure as in quantum electrodynamics, and its Green's function 
takes the form (see, also Namsrai, 1985b) 

A ( p ) ~ . ~ ( p ) =  g~'~ 1 
p2 cosh 21(--p2) 1/2 

For the scalar boson field the causal Green's function acquires the following 
form in the quantized space-time with the coordinates :~'~ = x ~ + il'y'ys: 

1 
A(p2)~N(p2)  m 2 - p  2 - i e  c~ (5) 

Thus, from formulas (4) and (5) we see that the obtained causal Green's 
functions for the fermion and boson fields coincide with the propagators 
of the corresponding extended (or spread-out) fields investigated in the 
nonlocal-stochastic quantum field theory due to Efimov (1977) and Namsrai 
(1985a). However, some slight difference appears in the fermion field case. 
In our scheme, a spread-out or nonlocal property of the fermion field is 
determined by means of its mass value only. If  a fermion is massless particle 
then it is local always in quantized space-time. This fact is very important 
since one can consider the fermion as the source in interaction processes 
between elementary particles, while the boson field carrying the interaction 
signal between them becomes nonlocal, like a wave packet. 

We notice that in accordance with (4) Einstein's relation E = mc 2 is 
changed in our case and takes the form E = mc2(l+�89 Einstein's 
formula is valid up to energy (mass) values attained recently by the world 
better accelerators. From this it is easy to obtain the following restriction 
on the parameter of the theory l ~< 10 -16 cm (see, also Namsrai, 1985b). 

It is interesting to note that for the fermion field case analogous results 
were obtained by Markov (1958) (see, for detail, Blokhintsev, 1973) in the 
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stochastic theory based on the hypothesis of  stochastic space-time with a 
small additional fluctuational term of the type of (1): x ~  ~= x~+ a ~, 
where a ~ is a random vector with some distribution. These authors at tempted 
to link the inner structure of  particles with this vector a 9. Our earlier work 
(Namsrai,  1985b) belongs to this direction and as shown by us some concrete 
method of  introducing quantized space-time leads to the nonlocal theory 
of quantized field theory (Efimov, 1977) constructed by means of an idea 
of stochasticity of  space-time (Namsrai,  1985a). In general, we expect that 
the two ideas, stochastic and quantized structures of  space-time at small 
distances, are very close to each other, at least at the mathematical method 
level. 

Now we turn to the problem of how to realize the quantized space-time 
idea by means of transformation language of coordinate systems. 

3. THE AFFINE C O N N E C T I O N  

The affine connection is the more convenient method for the study of  
physical processes taking place in different coordinate systems and their 
covariant description under mutual transformations between them. The 
affine connection method is based on the principle of  the universal constant 
velocity of  light, expressed by the concept of  the square interval or proper  
time of events. The essence of the affine connection method is the following. 

Let us consider a particle moving freely under purely gravitational 
force. According to the equivalence principle there exist a freely falling 
coordinate system ~:~ in which the motion of  the particle is rectilinear and 
is described by the following equation: 

d2~ ~ 
= 0 (6) 

d~- 2 

where dr  is the proper time 

7 0 0  = - -  7 1 1  = - -  7 2 2  = - -  7 3 3  = 1 
dr 2 = r /~  d~ :~ ds ~ ,  7 ~  = [0,  a #/3 (7) 

We now suppose that at our disposal there is any other coordinate system 
x ~ which may be regarded as resting Cartesian coordinate with respect to 
the laboratory one and also as curvilinear, accelerated, rotating, or any 
other coordinate system we wish. Coordinates ~:~ of the freely falling 
coordinate system are functions of  x ~" and equation (6) takes the form 

d r \ O x  ~ d r /  Ox ~ d r  ~ + 1  = 0  Ox ~ Ox ~ d r  d r  
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Multiplying this equation by OxX/O~ ~ and using the well-known rule of 
multiplication, 

O( ~ Ox ~ 

~  ~ o~  ~ = a~ 

we have the following equation for the particle motion 

d2x.__...~ a" d x  ~" d x  ~ 

dz 2 ~r*~ d---;- d--; - = ~  (8) 

where F ~  is called the affine connection and is determined by the relation 

~ _ { ' ~ }  Ox~ 0 2 ,  ~ 

r . ~ =  #v ~0~ ~ Ox" Ox ~ (9) 

The proper time (7) may also be expressed in an arbitrary coordinate system 

d,r2 Of  . ~ Os c d x  ~ 
= "%t30x---~ a x  Ox---; 

o r  

d r  2 = g . p  d x  ~ d x  ~ 

where g.~ is the metric tensor which is given by 

g ~ -  Ox ~ Ox ~ ~7~ 

It turns out that the affine connection method can be applied to define 
geometrical and physical objects in quantized space-time with coordinates 
(2). Thus, in our consideration there are three coordinate systems: inertial 
(with the coordinates s ea and the metric tensor "%~), noninertial (with the 
coordinates x ~ and the metric tensor g.~), and general [with the quantized 
coordinates ~ (2) and corresponding metric tensor is denoted g~,~(;)]. 
Then, from the constancy principle of the proper time in any coordinate 
system, we have 

d , r 2 = n , ~ d r 1 6 2  d x ' d x " = g ~ , , , ( : ~ ) d : ~ "  ^ d : ~  " (10) 

where the symbol ^ means noncommutativity of the multiplication law of 
variables ~ .  

We know the affine connection between coordinates ~ and x ~, which 
is given by (9). Similar calculation may be made for the passage from 
coordinate system x ~ to the quantized one s the result reads 

x ~, OxX Ox~ Ox~ a O~'X O2x~ 

F~,,(x)-ox ~ o ;  ~ ^ 0--~ {r~}-~ Ox ~ ox";--~"^ Ox (11) 
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In order to obtain the explicit form of the Christoffel symbol F ~ ( ~ )  we 
must define the concrete dependence of quantized coordinates ~" from x", 
i.e., form of F"(x)  in (2). We give this dependence within the framework 
of the tetrad formalism in which we assume 

F~(x) = F ~ e $ ( x )  (12) 

where F a are matrices (of the type of Dirac matrices y") with zero traces 
or their different combinations, independent of the coordinates x"  and 
satisfying the following relation: 

FaFb +FbFa = 2~? ab 

[~?~b is the metric tensor of the inertial coordinate system, diag ~7= 
(1, -1 ,  -1 ,  -1) ] .  eX is the "vielbein" field which specifies the basic vectors 
of the linear tangent space at each point of a curved space-time manifold. 
This implies that e$ is nonsingular, and has an inverse e~, defined by 

b b a v v e~ e ,  = 8~, e~ ea = 8 ,  
a 

The standard nomenclature is to call e ,  the vielbein and eX the inverse 
vielbein. Here through /x, v , . . .  and a, b , . . .  w e  denote world indices and 
tetrad indices (or local Lorentz indices), respectively. From (2), after 
straightforward calculation, we have 

d ~ "  = d x "  + IF a O e 2 ( x )  d x  ~ 
OX v 

o r  

d ~ " _  8 ~  + 1F a O e X ( x )  (13) 
d x  ~ Ox ~ 

Here we have assumed that ~ and x spaces are independent of each other 
and therefore the following standard relations hold: 

a~ ~ ax ~ 
o x  ~ o~  ~ 8 ,  

o r  

O~ ~ OX r 

Ox ~ O~ ~ ~ (14) 

On the other hand, makitlg use of (14) we get from (2) 

~ ~ e O ~  . . . .  
o x  ~ lro + t2rorb o o Oe__~ (15) 
O~ ~ = 8'~ - Ox Ox ~ Ox ~ 
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Thus, by using the formulas (11), (13), and (15) one can define F ~ ( ~ )  the 
explicit form of which will be given below in Section 4. 

The vielbein field e~ (x )  is the world vector with respect to the index 
/~ and its transformation law under the passage from one to another 
coordinate system is defined by the standard way, i.e., 

e~(~) - 0~---~ e~(x) 
- -  Ox ~ 

or 

e ~ ( : ~ ) = e ~ ( x ) +  b t3 Oe~ (16) 
IF e~ (x)  Oxt~ 

The existence of the inverse vielbeins allows the introduction of a covariant 
metric tensor 

g ~t~ (x) = e:  (x) eb r (X) nab (17) 

where r/ab is a Lorentz invariant tensor, which can be used for local 
measurements of distances and angles in space-time. On the other hand, 
from (10) we get 

g" ( :~ )  - Ox ~ ^ - - -  0 7 g  (x) (18) 

Taking into account (13) and (17) we have finally 

g~"(2)  = gYm'(x) + l [ g ~ " ( x )  0F~'(x) ' ~'" " ~ 
Ox '~ •  ~x) Ox,~ j 

0r"(x) 
+ 12g~t3(x) ^ (19) 

Ox t3 

From this we see that in our model the metric tensor consists of two parts: 
symmetrical-usual classical and additional-quantized ones with antisym- 
metrical term due to quantized space-time. The latter part characterizes just 
the quantum property of space-time at small distances and disappears in 
the limit l ~  0. In the language of the particle structure this part may be 
connected with internal quantum properties of the particle such as spin, 
isospin, electric and magnetic charges, etc. A majority of physicists believe 
that metric tensor is symmetric. However, in light of recent development 
of the unified gauge theory of all interactions including gravity in which 
geometrical aspects (topology, anomalies related with string and superstring 
theories), astrophysical problems (torsion, rotation, and asymmetry of the 
universe), and exotic phenomena such as magnetic monopoles and black 
holes, etc. are discussed intensively, it is very important to study structure 
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of space-time with the metric tensor of both types. In our opinion, quantum 
property of  space-time is crucial in the solution of the above-mentioned 
problems and may give important new ways of understanding physical 
phenomena at a deePer level. Here we show that the essence of the torsion 
and the existence of  the magnetic monopole are caused by the quantum 
nature of space-time at small distances. The last case may also be understood 
in another manner. One can say that if there exist magnetic monopoles, the 
space-time structure in the surroundings of them should always be quantized. 

Before going into these problems we now attempt to link quantized 
space-time property with the spin structure of the particle. For this, we 
consider the local field g~(x) and general coordinate transformations, i.e., 
arbitrary reparametrizations of space-time 

x" ~ x ~ + ~"(x) (20) 

Since spin is an intrinsic aspect of any theory one must also consider local 
rotations of  spin, which act on the field q~(x) according to 

~ , ( x ) ~ , ( x )  +~~ 

where Zab are the generators of the spin rotation group G in arbitrary 
dimensions in the representation appropriate to the field qffx). If we restrict 
ourselves to the Lorentz group, so that the generators 1~ab are antisymmetric 
in a and b and satisfy the commutator algebra 

[ ~ ' a b ,  Z cd ] = - -  6 a c  ~" bd "Jr •ad ~"bc q-  (~bc ~X~ ad  - -  r ~" ac (21) 

As usual (see, for detail, de Wit, 1984), at the same time of spin rotation, 
the concept of the spin connection is introduced, which appears in the 
covariant derivative 

1 abe"  

and transforms under spin rotation in the standard fashion, 

ab ~ ab a cb b ,f. ac 
(..0 ~ --~- O i.x E - -  O.) u.c ,~ - -  r ~c  

where we made use of (21). The presence of a world index in ~o]~ b is 
characteristic for gauge fields, therefore we call it the gauge field or the 
spin connection field. It is shown (see de Wit, 1984) that in the local tangent 
space frame determined by e," the spin connection field ~o~ b may be 
expressed by means of the given vielbein e~: 

ro~b~o):b(e) = 1 . . . . .  b g e . t ~ l ,  a b - - ~ ' ~ b c - - ~ ' ~ c a )  (22) 

where f~b is the object of anholonomity which measures the noncommuta- 
tivity of the vielbein basis 

f~b = eX e ; ( 0 . e ; -  0~e~) (23) 
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On the other hand, if introducing the method of quantized space-time 
will be regarded as coordinate transformations as in equation (20), then 
after standard calculations of the variation for the vielbein field e~, we obtain 

a /~ a a 
6 e ~  = iF (o~e~-o~e~) (24) 

Comparing this value with (22) and (23) one can say that introduction of 
quantized space-time by formula (2) may be connected with internal spin 
structure of the particle. As is shown by de Wit (1984), if spin rotation 
given by (22) and (23) is carried out, then the general affine connection 
will become nonsymmetric and it in turn gives rise to the torsion tensor. 
An analogous situation exists in our case. 

4. THE TORSION TENSOR 

First, consider the affine connection given by (11). Taking into account 
(13) and (15), and keeping terms of the order of 12, we have after simple 
calculations 

Fr vp.  L~xO Lv.J-~x~ Lal~J-ox ---2 a~, o x - ; o x d J  

L a x  ~ o x  '~ ~r8 o x  ~" o x  ~ o -~  

oF~ oF~ f h ] 02F x OF ~ O2F x OF/3 - t - - - - /  ~ - 1 - -  - - ~ - - - -  
Ox '~ O x "  o ' v  Ox  '~ O x "  Ox  ~" Ox  ~ O x "  Ox  g 

Ox  ~ Ox  ~' p,o" Ox  a O x "  vcr 

From this expression we see that the affine connection contains such terms 
which are antisymmetric with respect to the rearrangement of the indices 
v,/~. It is well known that the antisymmetric part of the affine connection 
determines the torsion tensor (see de Wit, 1984), i.e., 

where 

A a 

no a 0e~ 0e~ 
Q ~  = 1 2 ~  [ror  b _ r b r  c] 

Ox ~ Ox ~' Ox  ~ 
(25) 

arises from the antisymmetric part of the metric tensor and is called the 
torsion tensor, the physical meaning of which is connected to internal 
rotations of space-time itself. It is obvious that in the classical limit l-> 0 
both the antisymmetric part of the metric tensor and the torsion tensor 
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become zero. This means that the torsion tensor is indeed connected with 
the quantum property of space-time at small distances and its value is very 
small of the order of 12. 

Let us consider the particular case, when F ~ = iy,ys, ,ya are the usual 
Dirac matrices. At this the torsion tensor (25) takes the form 

where 

12 Oe~- Oe~ Oe~, y:b 

Q ~ =  ox  ~ ox  ~ Ox ~ 
(26) 

E~b = y~yb _ yby~ 

is associated with the generator of the spin rotation in tetrad formulation. 

Recently, torsion and related problems have been the subject of many 
papers (see, for example, Ivanenko, 1983; Obukhov, 1983; Trautman, 1980). 
In particular, torsion can prevent collapse. It also leads to an interesting 
precession of spin in the space endowed with torsion which could provide 
a method for measuring torsion. One of  the most important consequences 
of  torsion is its induction of nonlinearities, e.g., in Dirac's equat ion--of  
cubic pseudovector type, having the form proposed earlier by Ivanenko 
(1938): 

[y~O~ + m + A (t~y~ysqJ) yays] ~ = 0 

It is no exception that the torsion over the whole scale of  the universe may 
give rise to its rotation with the angular velocity of the order of 10 -13 rad/yr  
indicated by Birch (1982). 

Now we define the curvature of space-time within the framework of 
our formalism. Since the metric tensor and the affine connection have 
additional terms due to quantized space-time structure and therefore the 
curvature is also changed in our case. By using the usual definition of  the 
curvature and carrying out some calculations and keeping terms of the order 
of 1 in the obtained expression for the generic curvature, we obtain 

e ~ e ~ x ^ - x ~0 ~ ~ - I F  ao___~ 
r , : , ( x ) , R o , ~ ( x ) + l F  ~x~Rp,~,v. Ox o R,~.~,. 

_ I F  ~0e~ , _ i F  a e~ 
Ox ~ Rp, ,~  Ox R~,~,~ 

where R~,~,(x) is the usual Einstein curvature tensor depending on the 
classical coordinates x ~. It is very interesting to carry out an investigation 
of  Einstein's equation constructed by means of this new curvature. However, 
this problem is beyond the scope of this paper and is a matter of our further 
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work. Here our next step is to study the problem of magnetic monopole 
from the quantized space-time point of view. 

5. DIRAC MAGNETIC MONOPOLES IN QUANTIZED 
SPACE-TIME 

The possible existence of magnetic monopoles in nature is a very exotic 
problem of physics during its history. One of the earliest recorded discussion 
of magnetic monopoles is found in a latter written by Petrus Peregrifius de 
Maricourt in AD 1269, it was addressed to the great magnetist Gilbert and 
contains the initial idea of poles and lines of force. Maxwell also considered 
magnetic poles in his unification of electricity and magnetism but lack of 
experimental evidence caused them to abstain from its final formulation. 
J. J. Thomson (1904) had noticed the remarkable theoretical fact that the 
electromagnetic angular momentum in a magnetic pole-electric charge 
system was independent of their separation. The great modern physicist 
Dirac (1931) studied the magnetic monopole problem within the framework 
of quantum mechanics and special relativity. Dirac demonstrated that a 
single magnetic pole anywhere in the universe would explain the fact that 
all electric charge occurs only as discrete integral multiples of e, the charge 
of the electron, in essence electric charge quantization 

eg = n ( h c / 2 )  

where e and g are the electric and magnetic charges, respectively, and n is 
the principal quantum number. The monopole charge, if there exists one, 
is 70 times larger than the electric charge. This fact gives rise to two 
consequences playing an important role in the experimental search of 
magnetic monopoles: a rapidly moving monopole should produce heavy 
ionization as it passes through matter and monopoles should bind to some 
forms of matter. In the Dirac theory other monopole properties: size, shape, 
mass, parity, spin, etc. are arbitrary and, moreover, some mathematical 
proble/n appears. The point magnetic charges of Dirac monopoles are 
singular, in the sense that they are singularities of the electromagnetic field, 
i.e., the vector potential A, has a line singularity, and the "Dirac veto" or 
the Dirac string, which leads to the quantization, is the requirement that 
the electron wave function vanish on this line-string. Wu and Yang (1975) 
have reformulated Dirac's theory to avoid any singularities in A,. It turns 
out that the mathematical structure of the Wu-Yang theory is that of fiber 
bundles and the Dirac monopole does also have a topological origin (see, 
for example, Ryder, 1977). 

The next important step in the theory of magnetic monopoles was taken 
by Polyakov (1974) and t' Hooft (1974) within the gauge theory of particle 
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interactions. They independently showed that monopoles appear as stable 
solutions of spontaneously broken Yang-Mills field equations and are 
required by a large class of theories (see, for example, Goddard and Olive, 
1978, and Coleman, 1982). If this gauge theory is correct, 't Hooft-Polyakov 
monopoles inevitably exist, and their mass is not arbitrary, at least, of the 
order of - 100mw or larger (mw-  100 GeV is the intermediate vector boson 
mass of the electroweak theory due to Weinberg, 1967; Salam, 1968; and 
Glashow, 1961) and they are of finite size. Owing to the non-Abelian 
structure of the gauge group no string singularity appears, in contrast to 
the Abelian theory of monopoles, developed originally by Dirac (1931), 
where the string was required in order to preserve the magnetic flux. Another 
peculiarity of 't Hooft-Polyakov monopoles is that magnetic charge has a 
topological origin; that is to say that the boundary conditions on the fields 
are ones which cannot be changed continuously in constant values. The 
asymptotic field configuration is topologically nontrivial, and this gives rise 
to the quantized magnetic charge. 

Magnetic monopoles also do appear in the so-called grand unification 
theories, GUT's, that unify strong and electroweak forces. Rapid quenching 
of the Higgs fields in the universe expanding process leads to topological 
defects (Kibble, 1976) which are magnetic monopoles whose masses are 
typically - 1016 GeV. 

Recently, many attempts were made by experimentalists (see, review 
due to Carrigan and Trower, 1982; 1983) to detect magnetic monopoles, 
but they have up to now not seen them. However, the necessity of their 
existence is dedicated to the mathematical beauty of the physical theory 
based on the symmetry principle of nature. 

Now we go on to discuss the magnetic monopole problem from the 
quantized space-time point of view. Our aim is modest. We show that if 
space-time is quantized the magnetic monopole should exist as a direct 
consequence of the geometrical structure of this space-time. Generally 
speaking, in the usual classical space there is no place for magnetic 
monopoles described by regular potential A(x, t). This assertion is based 
on the following simple geometrical fact. Let A(x) be some regular static 
magnetic potential given the magnetic field H = rot A. On the other hand, 
if H is indeed real observable field caused by a point magnetic charge g, 
then it should give a magnetic flux through some closed surface S containing 
the charge g and bounded the volume V: 

P=~s(H'dS)= f vdVdivr~ (27) 
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However, because of the geometrical structure of  classical space 

a 2 
div rot A = e ijk A k  =-- 0 ( i, j ,  k = 1, 2,  3)  

Ox ~ Ox j 

It is obvious that in order to coordinate these two contradictory facts it 
should be either assumed that A possesses some singularities or the topologi- 
cal structure of  space in which div rot A r 0 should be changed for any 
regular value of A. It turns out that owing to noncommutabil i ty of  the 
quantized coordinates [2 i, ~ ]  ~ 0, div rot A(:~) is not vanishing in our scheme 
and takes the form 

div H ( ~ )  = e ~ 02 
02' ^a2 ~ A k ( ~ )  (28) 

where 02 ~ ̂  Ox j = - O M  ^ Ox ~ which follows from definition (2). Taking into 
account this definition and after some calculations we have 

d ivH(~)  e ok 0 2 A k ( X )  t-12e ~ 0 2 A k ( X )  0Fn(x) 0Fro(x) 
= = -: ^ (29) 

Ox' Ox j O x "  Ox" Ox ~ Ox j 

where we recall that Fn(x) = Fae~(x), e ~ ( x )  are the tetrad fields ( i , j ,  k,  n, m = 

1, 2, 3). The first term of  (29) coincides with the usual classical expression 
for d ivro t  A(x) (it goes to zero) and the second term appears due to 
quantized space-time. In (29) we also have not written terms which are 
symmetric over indices i , j  and turn to zero after using the fact that e ~ is 
a fully antisymmetric tensor of  the third rank. In order to calculate the 
explicit form of (29) we concretize F a matrices; F" = i y a y  5 and passage to 
the nonrelativistic limit for the given case, and use the following relation: 

F~F b _ FbF a ~ G"o -b _ o-bG ~ = 2isabCo -~ 

where o -a are the Pauli matrices. Further, using the identity 

ei jk  c)rn(x) orm(x) 1 0e: 0e~' 
�9 A e q k ( F a F b - F b F ~ )  - -  

Ox'  Ox j 2 Ox i Ox j 

ieiJkeabc o.C Oe~ Oe~  
Ox ~ Ox j 

we have for (29) 

div H(~) = i l2eogeabc O2Ak(X) 0e~ Oe~' _ _  c _ _  ( 3 0 )  
OX m OX n OX i OX j 
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Now we assume that the magnetic potential Ak (X) is regular everywhere 
and find its value by using the requirement that the averaged magnetic flux 
of (30) equals 41rg 

(P) = f dax(div U(:~)) = 47rg (31) 
3 

where the averaging procedure leads to taking the trace of (30). First of all, 
from (30) and (31) we see that Ak(x) -- crkf(x). Further, as usual, we assume 
that in our large-scale nonquantum space-time there is no selected direction 
and therefore the value of f(x)  must depend on the distance r =  
(x2+y2+ z2) 1/2 only. Thus, we suppose that 

{ 0_~_ for r -  < I 

Ak(x) = o -k (32) 
g[(r) for r > l 

and determine an explicit form of f(r), satisfying expression (31). The 
assumption that Ak(x)= 0, for r < -- l is based on the regularity proposal 
about Ak(x) at the point x=0 .  According to the assumption Ak(X)= 
--ig~rkf(r), the expression (30) takes the form 

12 
(divr~ x"xm[f'(r)[ r 2 f'(r)]+f'(r)~-~]r 3 j 

tl 
X eiJk6 abe Oeg Oe'~ (33) 

Ox' Ox j 
Here the terms with 6nm turn to zero and according to (3) the normalizing 
factor �89 arises from the fact that o -k is a two-column matrix. Taking the 
trace and using the identity 

we have finally 

where 

E abke ijk = ~ai ~bj -- ~aj ~bi 

12[f"(r ) f' 
(div rot A(x)) = g L ~5 7 3  1 (34) 

i=x~ Oe: Oe: 
k O X  a OX b OX b o x a J  

In the definition of the magnetic flux (31) the term with I enters into 
the integral over the polar variables and remaining integral over the radial 
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variable r should be 

I dr. -f'(r)/r 3] const (35a) r 2 [ f " ( r ) / r  2 

From this condition, it is easy to find an explicit form o f f ( r ) .  Indeed, using 
the identity 

d( f '+f )  =f"dr+f'r d r - f  dr 

o r  

we obtain 

- - d r = d  f '+  - f"dr+  dr 
r 

;d r ( f " - f ' / r )=2Idr f " ( r ) - Id ( f '+ f ) - I  f dr 

On the other hand, making use of partial integration in (35a) we get 

f dr(f"-f'/r)= f dr f" - f l  b . . . .  - f f dr 

(35b) 

The expressions (35b) and (36) should be equal to each other for any 
boundary condition: 

From the requirement that the magnetic flux does not depend on the value 
of the integration limits (in particular, 0 -< r < co or l -< r < ~) ,  we have the 
following differential equation for f ( r ) :  

f'(r) +f(r)/r = 0 
the solution of which is simple and has the form 

f(r) = c/r 
with some constant c. Assuming c = 1, we finally get 

0, for r_< I 

= O" 1 A(x) 
T g r ,  for r >  / 

(37) 

(36) 
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It should be noted that instead of the requirement A(x) = 0 for r -  < l in (37), 
of course, it is possible any other cases depending on an inner structure of 
the magnetic monopole, for example, A(x)= grip or gr2/l 3, for r ~  L 

Now we show that by this choice of the magnetic potential (37) its flux 
satisfies relation (31). For this, a concrete form of the tetrad field e~ should 
be defined. For simplicity, we choose the spherical frame of reference as 
the tetrad coordinate system and the Cartesian one for the world coordinate 

a 
system. Then the tetrad field e~ has the form 

a e~=O~/Ox ~, e2=Ox~/O~" 

where 

d ~  1 = dr,  d (  2 =  r dO, d ~  3 = p d ~  

d x '  = dx ,  a x  ~ = dy,  cry 3 = az ,  a x  ~ = c a t  

and r = (x2+y2+ z2) 1/2, p = (x2+y2) 1/2. One can easily see that the field e~ 
is given by 

x/r zx/rp -y/p 0 
~=ly/r zy/rp x/p 0 

e~, ~ z / r - p / r  0 0 
\o 0 0 1 

(38) 

Taking into account (38) and carrying out the necessary calculation, we get 
from (34) with (37) 

(P)=~s(HdS)=fd3x(divH(x))=312g87rfTr2dr 4 - 7 - =  ~g (39) 

where 

f d~ I=~Tr 

Thus, we arrive at the relation (31). From our result may be concluded that 
if space-time structure possesses quantized nature then in it there is place 
for magnetic monopoles or, in contrary, if there exist magnetic monopoles 
then space-time surroundings of them should have a quantized property. 

In conclusion, it should be noted that magnetic potential in quantized 
space-time is regular everywhere and may be defined from the physical 
condition imposed on the value of the magnetic flux which equals 4~'g. 
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